World's largest computer grid storage project established

World's largest computer grid storage project established

By Stuart Finlayson

Mar 22, 2005: In a quest to effectively manage and store the massive amounts of data generated through its research into nuclear technology, CERN (the European organisation for nuclear research) has established what is considered to be the world's largest international grid project, spanning 31 countries across the globe.

The Large Hadron Collider Computing Grid (LCG) project was established in order to deal with the anticipated huge computing needs of the Large Hadron Collider (LHC), currently being built at CERN near Geneva, Switzerland. The sites participating in the LCG project are primarily universities and research laboratories. They contribute more than 10,000 central processor units (CPUs) and a total of nearly 10 million Gigabytes of storage capacity on disk and tape.

The LHC is a particle accelerator used to study the fundamental properties of sub-atomic particles. It is due to start operating in 2007. The LCG project was launched in 2003 and is growing rapidly. The Grid operated by the LCG project is already being tested by the four major experiments that will use the LHC, namely ALICE, ATLAS, CMS and LHCb, to simulate the computing conditions expected once the LHC is fully operational. As a result, the LCG partners are achieving record-breaking results for high-speed data transfer, distributed processing and storage. Already, other scientific applications from disciplines such as biomedicine and geophysics are being tested on this unique computing infrastructure.

The mission of the LHC Computing Grid (LCG) project is to build and maintain a data storage and analysis infrastructure for the entire high energy physics community that will use the LHC. Discovering new fundamental particles and analysing their properties with the LHC accelerator is possible only through statistical analysis of the massive amounts of data gathered by the LHC detectors ATLAS, CMS, ALICE and LHCb, and detailed comparison with compute-intensive theoretical simulations. The goals of the LCG project include: developing different software components to support the physics application software in a Grid environment; developing and deploying computing services based on a distributed Grid model; managing users and their rights in an international, heterogeneous and non-centralized Grid environment; managing acquisition, installation, and capacity planning for the large number of commodity hardware components that form the physical platform for the LCG project.

The LCG project leader Les Robertson, said: "We are well ahead of our original schedule for reaching 100 sites, and thanks is due to the many partner sites around the world for their contribution to this success - making a Grid like this is a truly collaborative effort."

The Global Grid Forum, which is a community-initiated forum of thousands of individuals from industry and research leading the global standardization effort for Grid computing, is meeting in Seoul this week. The Chair of the GGF, Mark Linesch, described LCG's 100-site milestone as "great news for Grids, and great news for science. Without doubt the LCG project is pushing the envelope for what an international science Grid can do."

Despite the record-breaking scale of the LCG project today, Robertson notes that the current processing capacity of this Grid is estimated to be just 5 percent of the long-term needs of the LHC. Therefore, the LCG will continue to grow rapidly over the coming two years, both by adding sites and increasing resources available at existing sites. In addition, the exponential increase in processor speed and disk storage capacity inherent to the IT industry will help to achieve the LHC's ambitious computing goals.

Related Article:

Global consortium boost for grid computing